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Abstract

The problem of uniqueness for shock waves interaction in isothermal gas dynam-

ics is under consideration. Using the weak asymptotics method, an uniform in time

asymptotic solution has been constructed for two interacting shocks.

1 Prehistory

The relations for parameters of single shock waves (the so-called Rankine-Hugoniot condi-
tions) have been found by Rankine and Hugoniot. The problem of arbitrary shocks decay in
gases has been solved by Riemann. This implied the description of shock waves interaction.
Therefore, this problem seemed to be solved and closed.

However, when mathematicians started to define shock wave solutions in the sense of
distributions, a problem of nonuniqueness of weak solutions appeared. It is well-known that
for single shocks this problem has been overcome by O. Oleinik and S. Kruzhkov for scalar
equations and by P. Lax for hyperbolic systems (the so-called entropy conditions have been
found). At the same time, similar problem for interacting shocks remained unsolved.

The unique result here has been obtained by G. Whitham in 50-th of the last century for
the Hopf equation (inviscid Burgers equation) with quadratic nonlinearity

∂u

∂t
+
∂u2

∂x
= 0, (1)

but the techniques used does not allow to consider more general problems including the Hopf
equation with convex nonlinearity

∂u

∂t
+
∂Φ(u)

∂x
= 0, Φ′′ > 0. (2)

The main obstacle here consists of the following. In order to prove the uniqueness we follow
the method of vanishing viscosity by Oleinik and pass from the hyperbolic equation (2) (or
(1)) to a regularization, in the simplest case to the Burgers equation

∂uε

∂t
+
∂Φ(uε)

∂x
= ε

∂2uε

∂x2
, ε << 1. (3)
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Instead of nonsmooth initial data for the Hopf equation

u|t=0 = A1H(x) + A2H(x− x0), (4)

where H(x) is the Heaviside function, H(x) = 0 for x < 0 and H(x) = 1 for x > 0,
Ai = const, we consider smooth initial data

uε|t=0 = A1ω
(x
ε

)
+ A2ω

(x− x0

ε

)
, (5)

where ω(x/ε) is a regularization of the Heaviside function. Obviously, for any fixed ε = const
the solution of the problem (3), (5) exists and it is smooth and unique. However, to find
the limiting solution u = limε→0 uε for a time after the interaction we have to solve the
problem (3), (5) exactly or, at least to describe the solution in detail. Unfortunately, the
exact solution can be found only in the case of quadratic nonlinearity Φ(u) = u2 (using the
Hopf-Cole substitution). Moreover, any traditional asymptotic method does not work here.

2 The weak asymptotics method

The progress in the problem of nonlinear waves interaction has been achieved only recently
in the framework of the weak asymptotics method (Danilov, Omel’yanov, Shelkovich, [1] -
[3]). The main advantage of this approach is the reduction of the problem of describing of
nonlinear waves interaction to qualitative analysis of some system of ordinary differential
equations (instead of analysis of partial differential equations).

This method takes into account the fact that solutions of regularized problems, which
are smooth for ε > 0, become non-smooth in the limit as ε → 0. So we will treat these
solutions as mappings C∞ (0, T ;C∞ (R1

x)) for ε > 0 and only as C (0, T ;D′ (R1
x)) uniformly

in ε ≥ 0. Next, since it impossible to find exact solutions, we will construct asymptotic
solutions treating the smallness of remainders in the weak sense. For example, uε is a weak
asymptotic solution of the equation (3) with precision O′(ε) if for any ψ ∈ (1

x) the following
relation holds

d

dt

∫
∞

−∞

uεψdx−

∫
∞

−∞

{
Φ(uε)

∂ψ

∂x
+ εuε

∂2ψ

∂x2

}
dx = O(ε). (6)

Another important remark is that solutions under consideration correspond in the limit to
elements of some subalgebras with shifts in the space of generalized functions. For example,
let ω(x

ε
) be a regularization of the Heaviside function H(x),

ω(
x

ε
) = H(x) +OD′(ε) → H(x) as ε→ 0 in D′ sense.

Then
ω2(

x

ε
) = H(x) +OD′(ε) → H(x) as ε→ 0 in D′ sense.

Moreover, for the product of H(x) and H(x − ϕ) we can write only the nonuniform in ϕ
formula

H(x)H(x− ϕ) = H(x− ϕ) if ϕ > 0, H(x)H(x− ϕ) = H(x) if ϕ < 0.
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However, passing to generalized functions we obtain the uniform formula

ω
(x
ε

)
ω
(x− ϕ

ε

)
= H(x)B

(ϕ
ε

)
+H(x− ϕ)

(
1 −B

(ϕ
ε

))
+OD′(ε),

where B(z) ∈ C∞ is such that B(z) → 1 as z → −∞ and B(z) → 0 as z → +∞.
Realization of these ideas allowed us to solve some nontrivial problems. In particular, the
interaction of solitons for nonintegrable versions of the KdV and sine-Gordon equations have
been described and the uniqueness of shock waves interaction for the Hopf equation with
convex nonlinearities (2), (4) has been proved, [1] - [3].

3 Shock waves interaction in gas dynamics

Consider the simplest isothermal version of the gas dynamics equations

∂ρ

∂t
+

∂

∂x
(ρu) = 0, ρ

(∂u
∂t

+ u
∂u

∂x

)
+
∂p

∂x
= 0, p = c20ρ. (7)

Let us restrict ourselves by the case of two shocks with opposite directions of motion

ρ|t=0 = ρ0 + e1H(−x + x0
1) + e2H(x− x0

2),

u|t=0 = u1H(−x + x0
1) + u2H(x− x0

2), (8)

where e1 = ρ1 − ρ0, e2 = ρ2 − ρ0 and we assume that ρi > ρ0 > 0, i = 1, 2, u1 > 0 > u2 and
x0

1 < x0
2. The existence of the problem (7),(8) solution is well-known. Our aim is the proof

of the uniqueness of the solution.
Before the time of interaction the solution is the sum of isolated shocks,

ρ = ρ0 + e1H(−x+ ϕ10(t)) + e2H(x− ϕ20(t)),

u = u1H(−x + ϕ10(t)) + u2H(x− ϕ20(t)), (9)

where
ϕ10(t) = c0

√
ρ1/ρ0 t+ x0

1, ϕ20(t) = −c0
√
ρ2/ρ0 t + x0

2.

In order to obtain a uniform in time description of the process of interaction, let us pass to
a regularized problem

∂ρε

∂t
+

∂

∂x
(ρεuε) = 0,

∂

∂t
(ρεuε) +

∂

∂x

(
ρεu

2
ε + pε

)
= ε

∂2uε

∂x2
, pε = c20ρε, (10)

ρε|t=0 = ρ0 + e1ω
(−x + x0

1

ε

)
+ e2ω

(x− x0
2

ε

)
,

uε|t=0 = u1ω
(−x + x0

1

ε

)
+ u2ω

(x− x0
2

ε

)
,
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where ω(x/ε) is a regularization of the Heaviside function H(x).
Of course, it is impossible to find the exact solution of the problem (10). Therefore

we will construct a weak asymptotic mod OD′(ε) solution. This means that the following
relations

d

dt

∫
∞

−∞

ρεψ1dx−

∫
∞

−∞

ρεuε

∂ψ1

∂x
dx = O(ε),

d

dt

∫
∞

−∞

ρεuεψ2dx−

∫
∞

−∞

(
(ρεu

2
ε + pε)

∂ψ1

∂x
+ εuε

∂2ψ2

∂x2

)
dx = O(ε), (11)

hold for any test functions ψi ∈ D(R1), i = 1, 2.
Let us write the anzatz in the following form

ρε = ρ0 + e1ω
(−x + Φ1

ε

)
+ e2ω

(x− Φ2

ε

)
+Rω

(−x + Φ1

ε

)
ω
(x− Φ2

ε

)
,

uε = u1ω
(−x + Φ1

ε

)
+ u2ω

(x− Φ2

ε

)
+ Uω

(−x + Φ1

ε

)
ω
(x− Φ2

ε

)
, (12)

where

Φi = ϕi0(t) + ψ0(t)ϕi1(τ), ψ0(t) = ϕ20(t) − ϕ10(t), τ =
ψ0(t)

ε
,

functions ϕi1(τ) ∈ C∞, R = R(τ) ∈ C∞, and U = U(τ) ∈ C∞ are such that

ϕi1(τ) → 0 as τ → +∞, ϕi1(τ) → ϕ̄i1 = const as τ → −∞,

R and U are slowly increasing functions as τ → +∞,

R(τ) → R̄ = const, U(τ) → Ū = const as τ → −∞.

It is easy to calculate the weak asymptotic expansions for the functions (11)

ρε = ρ0 + {e1 +RB}H(−x+ Φ1) + {e2 −RB}H(x− Φ2) +OD′(ε),

uε = {u1 + UB}H(−x + Φ1) + {u2 − UB}H(x− Φ2) +OD′(ε), (13)

where the function B(τ) ∈ C∞ has the properties

B(τ) → 0 as τ → +∞ B(τ) → 1 as τ → −∞.

The next step is the calculations of the products ρεuε and ρεu
2
ε. In fact, the weak asymptotic

expansions of them have the same structure as presented in (13). For example,

ρεuε = {ρ1u1 +G1(τ)}H(−x+ Φ1) + {ρ2u2 −G1(τ)}H(x− Φ2) +OD′(ε),

where G1 is a function written in terms of R, U , and some convolutions. So, substituting
the anzatz (12) into the relations (11) we obtain the following equalities

Di1(τ)δ(x− Φ1) +Di2(τ)δ(x− Φ2) = 0, i = 1, 2,
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where

Di1 =
dϕ10

dt
+ ψ0t

d

dτ
(τϕ11) +Ki1

( d

dτ
(RB),

d

dτ
(UB), RB, UB, τ

)
,

Di2 =
dϕ20

dt
+ ψ0t

d

dτ
(τϕ21) +Ki2

( d

dτ
(RB),

d

dτ
(UB), RB, UB, τ

)
.

Obviously, this implies the equations

Dij = 0, i, j = 1, 2. (14)

The equations (14) are, perhaps, the most important result of the construction since they
can be treated as a generalization of the Rankine-Hugoniot conditions for the case of two
interacting shocks. Indeed, consider a time before the interaction. Since τ = (ϕ20(t) −
ϕ10(t))/ε and ε → 0, this time t corresponds to the limit as τ → +∞. It is easy to check
that equations (14) transform in this limit to the following form

ek

dϕk0

dt
= ρkuk, ρkuk

dϕk0

dt
= ρku

2
k + c20ek, k = 1, 2. (15)

Obviously, we obtain the Rankine-Hugoniot conditions for the original shocks before the
interaction. Let us consider the limit τ → −∞ which corresponds to time t after the
interaction. Let us denote

Φk → Φ̄k(t), ρ0 + e1 + e2 +RB → ρ∗, u1 + u2 + UB → u∗.

Then we obtain from (14)

(ρ∗ − ρ2)
dΦ̄1

dt
= ρ∗u∗ − ρ2u2, (ρ∗u∗ − ρ2u2)

dΦ̄1

dt
= ρ∗u∗2 − ρ2u

2
2 + c20(ρ

∗ − ρ2), (16)

(ρ∗ − ρ1)
dΦ̄2

dt
= ρ∗u∗ − ρ1u1, (ρ∗u∗ − ρ1u1)

dΦ̄2

dt
= ρ∗u∗2 − ρ1u

2
1 + c20(ρ

∗ − ρ1). (17)

We came again to the Rankine-Hugoniot conditions for the pair of shocks {(ρ∗, u∗),(ρ2, u2)}
and {(ρ∗, u∗),(ρ1, u1)} which propagate over the background (ρ2, u2) and (ρ1, u1), respectively.
Moreover,

ρ∗ =
ρ1ρ2

ρ0

, u∗ = u1 + u2. (18)

This is just the answer which has been found by Riemann.
It is very important to note that the limiting relations (15) and (16),(17) do not depend

on the way of regularization of the original problem.
The last step is the proof of existence of admissible functions ϕi1, R, and U . To this aim

we pass from the equations (14) to the dynamical system

dR̃

dτ
= F1(R̃, Ũ , σ),

dŨ

dτ
= F2(R̃, Ũ , σ),

dσ

dτ
= F3(R̃, Ũ , σ) (19)
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for the functions R̃ = RB, Ũ = UB, σ = (Φ2 − Φ1)/ε. We set a scattering type conditions

R̃→ 0, Ũ → 0,
σ

τ
→ 1 as τ → +∞ (20)

and have to learn the solution as τ → −∞.
To understand the structure of the phase portrait it is necessary to take into account that

there are surfaces of singularity Γi ⊂ R
3 where Fk → ∞ and curves of equilibrium γj ⊂ R

3

where F1 = 0 and F2 = 0. Let, for simplicity, ρ1 = ρ2. Then the most important curve γ1

lies on the plane Ũ = 0 and has the limiting points a±∞ as τ → ±∞. The point a+∞ is the
limit of γ1 as τ → +∞ and it easy to check that the ”initial data” (20) hold there. The
point a−∞ is the limit of γ1 as τ → −∞, and there

σ →
ρ0

ρ1

τ, R̃→
(ρ1 − ρ0)

2

ρ0

, Ũ = 0.

Moreover, a−∞ is a point similar to the stable node but with polinomial behaviour,

R̃ = R̃lim + c1|σ|
−λ1, Ũ = c2|σ|

−λ2, λi > 0.

On the contrary, a+∞ is a saddle point. Such structure is the background for a proof of the
existence of a trajectory which goes from a+∞ to a−∞ when τ varies from +∞ to −∞. This
completes the proof of the main result

Theorem 1. The solution of the problem (7), (8) is unique.
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