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Abstract

We consider different definitions in a weak sense of soliton-type solutions to KdV

equation with small dispersion.

1. It is well known that the Korteweg-de Vries (KdV) equation

LKdV [u] = ut + (u2)x + ε2uxxx = 0 (1)

has the one-soliton solution

u(x, t, ε) =
3v

2
cosh−2(

√
v

2
(x − vt)/ε), x ∈ R, (2)

where v is the soliton velocity. The pointwise limit as ε → +0 of solution (2) to the KdV
equation is the discontinuous function 3v

2
χ(x − vt), where χ(ξ) = 1 if ξ = 0 and χ(ξ) = 0 if

ξ 6= 0. The weak asymptotics (2) as ε → +0, up to OD′(ε2), becomes the infinitely narrow
δ-soliton

uε(x, t) = Aεδ(x − vt), ε → +0, A =
3v

2

∫

cosh−2(

√
v

2
ξ) dξ = 6

√
v, (3)

and δ(x) is the Dirac delta function. Here and in what follows
∫

denotes an improper integral
from −∞ to +∞. By OD′(εα) we denote a distribution from D′(R) such that for any test
function ϕ(x) ∈ D 〈OD′(εα), ϕ(x)〉 = O(εα), and O(εα) is understood in the ordinary sense.

We stress once more that here all generalized functions (distributions) are treated as
functionals on the space D(Rx) and these functionals depend on the other variables as on
parameters.
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It follows from (2) [2] that we have u(x, t, ε) = OD′(ε) as ε → +0 and ε2uxxx = OD′(ε3).
Therefore, the limit expression (3) was interpreted by V. P. Maslov, V. A. Tsupin and
V. P. Maslov, G. A. Omel’yanov (see [1] and the references therein) as an asymptotic up to
OD′(ε2) generalized solution of the Hopf equation

LH [u] = ut + (u2)x = 0, (4)

which is the limit problem for the KdV equation. In the same works the corresponding
generalized Hugoniot conditions, of the type of those for the shock wave front, were obtained.

If, instead of expression (2) which is the exact solution of the KdV equation and approx-
imates the weak asymptotics (3), we consider the function

ũ(x, t, ε) = Aω
(x − vt

ε

)

, (5)

where ω(z) ∈ C∞(R) has a compact support or rapidly decreases as |z| → ∞,
∫

ω(z) dz = 1,
then:

1) expression (5) also has asymptotics (3) in the sense of D′ as ε → +0 (see [2] for details);
2) substituting (5) into the Hopf equation (4), provided that a certain correlation between

the constants v and A is true (the generalized Hugoniot condition), we have LH [ũ] = OD′(ε2);
3) and u(x, t, ε) − ũ(x, t, ε) = OD′(ε2).
Therefore, an asymptotics up to OD′(ε2), i.e., an infinitely narrow δ-soliton-type solution

of the KdV equation (or the Hopf equation which is the limit problem of the KdV equation),
can be sought starting not from the exact solution (2) of the KdV equation (which is a
regularization of the Hopf equation) but from an ansatz of the form (5) substituted directly
into the Hopf equation.

Generalizing (3) and (5), one can seek the solution in the form

u(x, t, ε) = u0(x, t) + g(t)ω
(x − φ(t)

ε

)

,

by substituting this singular ansatz into the Hopf equation.
However, such an ansatz results in the solution with constant amplitude g = const of the

soliton for u0 6= const, which contradicts the well-known results about the soliton behavior.
Therefore, generalizing formula (5), we can attempt to construct an asymptotic solution to
the KdV equation (or the Hopf equation) of the form

u∗(x, t, ε) = u0(x, t) + g(t)εδ(x − φ(t), ε) + e(x, t)εθ(x − φ(t), ε), ε > 0, (6)

where u0(x, t), g(t), e(x, t), φ(t) are the desired smooth functions, and εδ(x, ε) = ω( x
ε
),

εθ(x, ε) = εω0

(

x
ε

)

are smooth approximations of the distributions εδ(x) and εθ(x), respec-
tively.

Here, the function ω(z) ∈ C∞(R) either has a compact support or decreases sufficiently
rapidly as |z| → ∞, for example, |ω(z)| ≤ C(1 + |z|)−3 and

∫

ω(z) dz = 1; ω0(z) ∈ C∞(R),
limz→+∞ ω0(z) = 1, limz→−∞ ω0(z) = 0.
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Then we have in the sense of D′(R) (see the notation above) εδ(x, ε) = εδ(x) + OD′(ε2),
εθ(x, ε) = εθ(x) + OD′(ε2), ε → +0. For more details, see [2].

Now, following [2], we can introduce the definition of the asymptotic generalized solution
of the form (6). Namely, we call u∗(x, t, ε) (8) a weak asymptotic solution to the KdV
equation (1) if

LKdV [u∗(x, t, ε)] = OD′(ε2). (7)

It is easy to see that our definition of the solution can depend on the choice of approxima-
tions 1

ε
ω(x−φ(t)

ε
) and ω0(

x−φ(t)
ε

) to the distributions δ(x−φ(t)), and θ(x−φ(t)), respectively.
Actually, the dynamics of solution of the type (6) is independent of the approximation of

the Heaviside function ω0(
x−φ(t)

ε
) [2].

In order to obtain the results known from the KdV equation theory it seems natural to
use the function from the formula for the exact one-soliton solution (2) to the KdV equation
as an approximation for εδ(x − φ(t), ε).

The system for the functions u0(x, t), g(t), e(x, t), φ(t) follows from definitions (7) (this
system was derived in detail in [2])

u0t + (u2
0)x = 0,

φt − 2u0(φ(t), t) − 2

3
g(t) = 0,

e(φ(t), t) − 3
√

6

2
gt(t)/g

3/2(t) = 0,
(

et(x, t) + 2(u0(x, t)e(x, t))x

)

∣

∣

∣

x>φ(t)
= 0.

(8)

It is easy to verify that under the condition g > 0 (which is an analog of the admissibility
condition in the theory of shock waves) the solution of system (8) exists on any interval
t ∈ [0, T ] such that the smooth solution u0 of the Hopf equations exists on this interval.

System (8) can be solved in the following way: first, one finds the smooth solution of the
Hopf equation, next, one finds the function e(x, t) from the last equations (which is uniquely
solvable in view of the inequality 2u0(φ, t) < φt), then one finds the (positive) function g(t)
from the next to the last equation, and finally, one finds the function φ(t).

Note that system (8) contains no obstacles to setting e(x, t) = 0. If so, g(t) = const in
the case of an arbitrary (nonconstant) background function u0(x, t). But this conclusion is
contrary to well known properties of soliton solutions of the KdV equation (see, e.g., [1]).

Moreover, under our notation, the weak asymptotics of the asymptotic one-soliton solu-
tion to the KdV equation, constructed by V. P. Maslov and G. A. Omel’yanov [1], has the
form

u∗

1,ε(x, t) = u01(x, t) + g1(t)εδ(x − φ1(t)) + e1(x, t)ε[1 − θ(x − φ1(t))], ε → +0. (9)

In other words, in the case (6) the ”shock wave” with a small amplitude εe(x, t)θ(x− φ1(t))
propagates in front of the soliton εδ(x − φ1(t)), but in the asymptotic one-soliton solution
constructed in [1] the small shock wave εe1(x, t)[1 − θ(x − φ1(t))] arises behind the soliton .
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If we apply definition (7) to the asymptotic solution obtained in [1], whose weak asymp-
totics yields (9), we obtain the following system of equations [2]:

u01t + (u2
01)x = 0,

φ1t − 2u01(φ1(t), t) −
2

3
g1(t) = 0,

e1(φ(t), t) +
3
√

6

2
g1t(t)/g

3/2
1 (t) = 0,

(

e1t(x, t) + 2(u01(x, t)e1(x, t))x

)

∣

∣

∣

x<φ1(t)
= 0.

(10)

The solution of the last system for g1t(t) 6= 0 is not uniquely determined by the initial
conditions e1(x, 0) for x ≤ φ1(0), since the velocity along the characteristic (ẋ = 2u01(x(t), t))
is less (for g1(t) > 0) than the velocity of the soliton φ1t = 2u01(φ1(t), t)+

2
3
g1(t) given by (10).

Thus, the assumption that the structure of the solution to the KdV equation is specified
by (9) due to definition (7) leads to an ill-posed Cauchy problem (with a nonunique solution)
for the functions u01(x, t), g1(t), e1(x, t), φ1(t).

On the other hand, the system of equations obtained in [1] for these functions has the
form

u01t + (u2
01)x = 0,

φ1t − 2u01(φ1(t), t) −
2

3
g1(t) = 0,

e1(φ(t), t) +
3
√

6

2
g1t(t)/g

3/2
1 (t) = 0,

(

e1t(x, t) + 2(u01(x, t)e1(x, t))x

)

∣

∣

∣

x<φ1(t)
= 0,

g1(t) + 2u01(φ1(t), t) = const,

(11)

It is evident that this system differs from system (10) by the additional equation g1(t) +
2u01(φ1(t), t) = g1(0) + 2u01(φ1(0), 0). The presence of this equation implies that system
(11) splits into the two systems: (the first, second, and last equations; the third and fourth
equations from (11)).

In this case, the third equality in (11) is the boundary condition for the fourth equation
in (11), which turns the Cauchy problem for the fourth equation in (11) into the well-posed
one (the Cauchy condition, in view of (9), has the form e1(x, 0) = e0

1(x)[1 − θ(x − φ1(0))]).
One can show [2] that the weak asymptotics corresponding to the asymptotic solution

of the Cauchy problem for the KdV equation constructed in [1] cannot be derived from the
solution to the KdV equation with the help of definition (7), and vice versa.

Definition 1. [2] The function u∗(x, t, ε) = u0(x, t)+g(t)εδ(x−φ(t))+e(x, t)εθ(−x+φ(t))
is a weak asymptotic (soliton-type) solution to the KdV equation (1) for t ∈ [0, T ] if for any
constants c1, c2 the following equality holds

(

c1 + c2u
∗(x, t, ε)

)

LKdV [u∗(x, t, ε)] = OD′(ε2),
u∗

ε(x, 0) = u0∗
ε (x) + OD′(ε2), (12)
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It is clear that (12) is equivalent to the following relations

LKdV [u∗(x, t, ε)] = OD′(ε2), u∗(x, t, ε)LKdV [u∗(x, t, ε)] = OD′(ε2),

and that the first relation coincides with definition (7).
One can easily see that (12) can be rewritten as an integral identity but of an unusual

form.
By analogy to what was previously said, the solution depends on the choice of the ap-

proximation, and to obtain the results known in the theory of the KdV equation one should
choose, as an approximation of the asymptotic distribution g(t)εδ(x − φ(t)), the function
from the formula for asymptotic solution to the KdV equation [1, 2]:

g(t)εδ(x − φ(t), ε) = g(t)ω
(

α(t)
x − φ(t)

ε

)

,

where α(t) =
√

g(t)
6

, ω(z) = cosh−2(z).

It is well known that the function ω(α(t)τ) is a solution of the boundary value problem
for the differential equation

−φt(t)
dω

dz
+ 2(u0(φ(t), t) + g(t)ω)

dω

dz
+ α2(t)

d3ω

dz3
= 0, (13)

where ω(z) → 0 as |z| → ∞.
As shown in [2], Definition 1 implies the system derived and justified by V. Maslov and

G. Omel’yanov (see the references in [1]).
However, as already mentioned, this is obtained under an additional assumption on the

form of the approximation of the δ-function. Namely, this approximation must be determined
by the solution of Eq. (13) which does not follow from Definition 1.

It turns out that this obstacle is removed by the following natural definition.

Definition 2. The function u∗

N(x, t, ε) is a weak asymptotic solution of order infinity if for
any N > 0 the following relation holds:

LKdV [u∗

N(x, t, ε)] = OD′(εN).

Here we consider a special case of this situation and prove the following statement.

Teorem 1. Let u∗

N(x, t, ε) = Aω(x−V t
ε

) be a weak asymptotic solution of the KdV equation
in the sense of Definition 2. Then the function ω is a solution of the equation

Aω2 − V ω + ω′′ = 0,

which belongs to the Schwartz space S.

Proof. Suppose that ω ∈ S(R) and A, ν are constants. We seek the solution of the KdV
equation in the form

u(x, t, ε) = Aω(
x − νt

ε
) (14)
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with accuracy OD′(εn), where n is arbitrary. Using the definition of the weak asymptotic
solution, we obtain the system of equations

AΩ0 − νΩ0 = 0,
νΩ1 − AΩ1 = 0,

(k + 1)kΩk−2 − νΩk + AΩk = 0, k ≥ 2.

(15)

Here Ωk =
∫

ω(z)zk dz and Ωk =
∫

ω(z)2zk dz. We denote ϕ(z) = Aω(z)2 − νω(z) + ω′′(z).
Then system (21) implies that

∫

ϕ(z)zk dz = 0 for all k ∈ Z+. Now we need the following
assertion.

Lemma 1. Let ϕ ∈ S(R), and let
∫

ϕ(z)zk dz = 0 for all k ∈ Z+. Then ϕ(z) ≡ 0.

Proof. Let ϕ̃ be the Fourier transform of ϕ. The assumption of the lemma is equivalent
to ϕ̃(k)(0) = 0 for all k ≥ 0. However, this does not allow us to conclude that ϕ(x) ≡ 0
because the function ϕ is not analytic.

We consider the functions

fk(ξ) =

∫

∞

−∞

ϕ(x)xkeixξ−x2/2 dx.

It is easy to see that for any k ∈ Z we have

fk(0) =

∫

∞

−∞

e−x2/2ϕ(x)xk dx = 0.

Let us consider the function

w(z) =

∫

∞

−∞

ϕ(x)eixz−x2/2 dx (16)

of the complex variable z. Since the integral (16) converges and the integrals obtained
from (16) by the formal (k-multiple, where k is arbitrary) differentiation with respect to z
under the sign of integral converge uniformly on any compact set in C, we see that w(z) is
an entire analytic function such that

w(k)(0) = ik
∫

∞

−∞

ϕ(x)xke−x2/2 dx = ikfk(0) = 0.

This means that w(z) ≡ 0 and thus we have

e−x2/2ϕ(x) =
1

2π

∫

∞

−∞

w(z)e−ixz dz = 0,

i.e., ϕ(x) ≡ 0.
Thus we have the following differential equation for ω:

Aω2 − νω + ω′′ = 0

and the condition ω ∈ S. The solution of this problem is the function

ω(z) =
3ν

2A
sech2

(

c +

√
νz

2

)

.
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